Showing posts with label phosphatidyl. Show all posts
Showing posts with label phosphatidyl. Show all posts

Saturday, December 15, 2012


One of nature's secret and ability to hide it, is by being simple.  While we expect things to be complicated and full of contorsions,  we are startled when at the end what we find is simple to understand!  One of the things we had figured out to be simple is the role of flippase and floppase, and may be the role of scramblase.   If one looks at a battery we use to power small electric equipment, one side is positive, the other is negative.  So there is a positive pole and a negative pole.  We can conclude that the battery is polarized.  The limit of a cell or one way the cell keeps what is inside of it, is by having its membrane polarized like an electrical fence.  The cell has understood that to be electrically polarized you got to have molecules in the membranes full of electrons.   And these electron-filled-molecules need to be maintained in position no matter what !  So the cell figures we need some Flippases and floppases to put things in the order above.  Meaning if the molecules we need in position A is outside the cell in position B, flip it in the right position A no matter what.  While flippase go A to B bringing these molecule inside.  Floppase goes B to A, sending molecule outside.  The Scramblase does both functions to mix things up!

This seems simple enough but wait!
This is how the cell tells the other cell "I am a dead cell, get rid of me"
Indeed, dead cells move Phosphatidyl serine, a normally internal surface molecule, to the outside of the cell, making it one of the most powerful signals to the Macrophage that this cell needs to be attacked and removed.
This disruption in lipid molecules is also linked to Bleb formation in the membrane, another powerful sign of cell death.   It is related to Caspase activity as an inducer of death, and therefore it is related to our 2nd law of nature which induces Caspases.  YOU CAN SEE HOW SIMPLE THINGS GET COMPLICATED FAST!  (This is also linked to protein Kinase activation, by the way!)

We are working hard at CRBCM, but CPRIT is resisting with the help!  Please help us!

NOTE   A is inside the cell
              B is outside the Cell, in our example.